THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics
 MATH2060B Mathematical Analysis II (Spring 2017)
 Tutorial 12

Tongou Yang

1. (a) Let $\left\{x_{n}\right\},\left\{y_{n}\right\}$ be sequences of complex numbers and let $s_{n}:=\sum_{k=1}^{n} y_{k}, s_{0}:=0$.

Prove the summation by parts formula:

$$
\sum_{k=n+1}^{m} x_{k} y_{k}=\left(x_{m} s_{m}-x_{n+1} s_{n}\right)+\sum_{k=n+1}^{m-1}\left(x_{k}-x_{k+1}\right) s_{k}
$$

for $m>n$.
(b) Use summation by parts formula to prove the Kronecker's Lemma: Let

$$
\sum_{n=1}^{\infty} x_{n}=s \in \mathbb{R}
$$

Let $0<b_{1} \leq b_{2} \leq \cdots \leq b_{n} \rightarrow \infty$. Then

$$
\lim _{n \rightarrow \infty} \frac{1}{b_{n}} \sum_{k=1}^{n} b_{k} x_{k}=0
$$

Note in particular, we have

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} x_{k}=0
$$

(c) Use summation by parts formula to study the convergence of the series:

$$
\sum_{n=1}^{\infty} \frac{\cos \pi n}{n}
$$

Hint: Write $\cos (\pi n)=\operatorname{Re}\left(e^{i \pi n}\right)$.
(d) Use summation by parts formula to compute:

$$
\sum_{j=1}^{\infty} j\left(\frac{1}{2}\right)^{j}
$$

2. These are for reference only.

Theorem 1. Suppose $\left\{a_{n}\right\}$ are complex numbers so that the power series

$$
G(x):=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

has radius of convergence 1 .
(a) (Abel's Theorem) Suppose

$$
\sum_{n=0}^{\infty} a_{n}=s \in \mathbb{C}
$$

Then $\lim _{x \rightarrow 1^{+}} G(x)=s$.
(b) (Littlewood's theorem) Conversely, suppose $\lim _{x \rightarrow 1^{+}} G(x)=s \in \mathbb{C}$, and that there is $C>0$ such that for any $n \in N$,

$$
\left|n a_{n}\right| \leq C
$$

Then

$$
\sum_{n=0}^{\infty} a_{n}=s
$$

